G4G_KMP [source code]
// JAVA program for implementation of KMP pattern
// searching algorithm
class G4G_KMP
{
void KMPSearch(String pat, String txt)
{
int M = pat.length();
int N = txt.length();
// create lps[] that will hold the longest
// prefix suffix values for pattern
int lps[] = new int[M];
int j = 0; // index for pat[]
// Preprocess the pattern (calculate lps[]
// array)
computeLPSArray(pat,M,lps);
int i = 0; // index for txt[]
while (i < N)
{
if (pat.charAt(j) == txt.charAt(i))
{
j++;
i++;
}
if (j == M)
{
System.out.println("Found pattern " + "at index " + (i-j));
j = lps[j-1];
}
// mismatch after j matches
else if (i < N && pat.charAt(j) != txt.charAt(i))
{
// Do not match lps[0..lps[j-1]] characters,
// they will match anyway
if (j != 0)
j = lps[j-1];
else
i = i+1;
}
}
}
void computeLPSArray(String pat, int M, int lps[])
{
// length of the previous longest prefix suffix
int len = 0;
int i = 1;
lps[0] = 0; // lps[0] is always 0
// the loop calculates lps[i] for i = 1 to M-1
while (i < M)
{
if (pat.charAt(i) == pat.charAt(len))
{
len++;
lps[i] = len;
i++;
}
else // (pat[i] != pat[len])
{
// This is tricky. Consider the example.
// AAACAAAA and i = 7. The idea is similar
// to search step.
if (len != 0)
{
len = lps[len-1];
// Also, note that we do not increment
// i here
}
else // if (len == 0)
{
lps[i] = len;
i++;
}
}
}
}
// Driver program to test above function
public static void main(String args[])
{
String txt = "ABABDABACDABABCABAB";
String pat = "ABABCABAB";
new G4G_KMP().KMPSearch(pat,txt);
}
}
// This code has been contributed by Amit Khandelwal.