FindModeInBinarySearchTreeOPT3 [source code]
public class FindModeInBinarySearchTreeOPT3 {
static
/******************************************************************************/
public class Solution {
Integer prev = null;
int count = 1;
int max = 0;
public int[] findMode(TreeNode root) {
if (root == null) return new int[0];
List<Integer> list = new ArrayList<>();
traverse(root, list);
int[] res = new int[list.size()];
for (int i = 0; i < list.size(); ++i) res[i] = list.get(i);
return res;
}
private void traverse(TreeNode root, List<Integer> list) {
if (root == null) return;
traverse(root.left, list);
if (prev != null) {
if (root.val == prev)
count++;
else
count = 1;
}
if (count > max) {
max = count;
list.clear();
list.add(root.val);
} else if (count == max) {
list.add(root.val);
}
prev = root.val;
traverse(root.right, list);
}
}
/******************************************************************************/
public static void main(String[] args) {
FindModeInBinarySearchTreeOPT3.Solution tester = new FindModeInBinarySearchTreeOPT3.Solution();
}
}
这个是 discussion 最优解: 5(58);
没有想到居然这么快;
他这个空间严格来说用了一个 list, 所以实际上也是属于没有做到O(1)的空间. 如果opt2没有为了O(1)空间而专门走两个 pass, 感觉速度应该不比这个差. 因为 opt2的代码其实是属于非常清晰的了, 这个代码的思路基本也没有什么区别, 没有理由速度有很本质的区别;
Problem Description
Given a binary search tree (BST) with duplicates, find all the mode(s) (the most frequently occurred element) in the given BST.
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than or equal to the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
For example:
Given BST [1,null,2,2],
1
\
2
/
2
return [2].
Note: If a tree has more than one mode, you can return them in any order.
Follow up: Could you do that without using any extra space? (Assume that the implicit stack space incurred due to recursion does not count).
Difficulty:Easy
Category:Algorithms
Acceptance:37.96%
Contributor: Coder_1215
Companies
google
Related Topics
tree
Similar Questions
Validate Binary Search Tree